
SMART CONTRACT AUDIT REPORT

For

TREES Token

Prepared For: SAFETREES ProjectPrepared By: Kishan Patel

Prepared on: 30th May 2021

About the Auditor: Kishan Patel works as an independent auditor with combine
5 years experience in Ethereum and Binance blockchain at Fiverr. He
specialized in auditing solidity code, finding bugs and vulnerability. He has
audited more than 500 smart contracts including SAFEMOON, SuperTron,
MintableBEP20 to name a few.

Table of Content

• Disclaimer

• Overview of the audit

• Attacks made to the contract

• Good things in smart contract

• Critical vulnerabilities found in the contract

• Medium vulnerabilities found in the contract

• Low severity vulnerabilities found in the contract

• Summary of the audit

• Disclaimer

The audit makes no statements or warranties about utility of the code, safety of

the code, suitability of the business model, regulatory regime for the business

model, or any other statements about fitness of the contracts to purpose, or their

bug free status. The audit documentation is for discussion purposes only.

• Overview of the audit

The project has 1 file. It contains approx 1182 lines of Solidity code. All the

functions and state variables are well commented using the natspec

documentation, but that does not create any vulnerability.

• Attacks made to the contract

In order to check for the security of the contract, we tested several attacks in

order to make sure that the contract is secure and follows best practices.

• Over and under flows

An overflow happens when the limit of the type variable uint256, 2 ** 256, is

exceeded. What happens is that the value resets to zero instead of incrementing

more. On the other hand, an underflow happens when you try to subtract 0

minus a number bigger than 0. For example, if you subtract 0 - 1 the result will

be = 2 ** 256 instead of -1. This is quite dangerous.

This contract does check for overflows and underflows by using

OpenZeppelin's SafeMath to mitigate this attack, but all the functions have

strong validations, which prevented this attack.

• Short address attack

If the token contract has enough amount of tokens and the buy function doesn’t

check the length of the address of the sender, the ethereum’s virtual machine

will just add zeros to the transaction until the address is complete.

Although this contract is not vulnerable to this attack, but there are some point

where users can mess themselves due to this (Please see below). It is highly

recommended to call functions after checking validity of the address.

• Visibility & Delegate call

It is also known as, The Parity Hack, which occurs while misuse of

Delegate call.

No such issues found in this smart contract and visibility also properly

addressed. There are some places where there is no visibility defined. Smart

Contract will assume “Public” visibility if there is no visibility defined. It is

good practice to explicitly define the visibility, but again, the contract is not

prone to any vulnerability due to this in this case.

• Reentrancy / TheDAO hack

Reentrancy occurs in this case: any interaction from a contract (A) with another

contract (B) and any transfer of ethereum hands over control to that contract

(B).

This makes it possible for B to call back into A before this interaction is

completed.

Use of “require” function in this smart contract mitigated this vulnerability.

• Forcing Ethereum to a contract

While implementing “selfdestruct” in smart contract, it sends all the ethereum

to the target address. Now, if the target address is a contract address, then the

fallback function of target contract does not get called. And thus Hacker can

bypass the “Required” conditions. Here, the Smart Contract’s balance has never

been used as guard, which mitigated this vulnerability.

• Good things in smart contract

• SafeMath library:-
o You are using SafeMath library it is a good thing. This protects you

from underflow and overflow attacks.

• Good required condition in functions:-

o Here you are checking that balance of the contract is bigger or equal to the

amount value and checking that token is successfully transferred to the

recipient's address.

o Here you are checking that the contract has more or equal balance then value.

o Here you are checking that the target address is a proper contract address or not.

o Here you are checking that the target address is a proper contract address or not.

o Here you are checking that the newOwner address value is a proper valid

address.

o Here you are checking that msg.sender should not be _previousOwner address

value, _lockTime should be less than now.

o Here you are checking that this function is not called by the address which is

excluded.

o Here you are checking that tAmount value should be less than or equal to the

_tTotal amount (Total token value).

o Here you are checking that rAmount value should be less than or equal to the

_rTotal amount (Total reflections value).

o Here you are checking that account address is not already excluded from a

reward.

o Here you are checking that an account address is not already included for

reward.

o Here you are checking that owner and spender addresses value are proper

addresses.

o Here you are checking that addresses values of from and to are proper, an

amount should be bigger than 0 and less than _maxTxAmount (Maximum

amount to transfer token.

• Critical vulnerabilities found
in the contract

=> No Critial vulnerabilities found

• Medium vulnerabilities found in the
contract

=> No Medium vulnerabilities found

• Low severity vulnerabilities found

o 7.1: Short address attack:-
=> This is not a big issue in solidity, because of a new release of the

solidity version. But it is good practice to check for the short

address.

=> After updating the version of solidity it’s not mandatory.
=> In some functions you are not checking the value of

Address parameter here I am showing only necessary
functions.

 Function: - isContract (‘account’)

o It's necessary to check the address value of "account". Because

here you are passing whatever variable comes in "account"

address from outside.

 Function: - excludeFromReward, includeInReward (‘account’)

o It's necessary to check the address value of "account". Because

here you are passing whatever variable comes in "account"

address from outside.

 Function: - _transferBothExcluded (‘sender’, ‘recipient’)

o It's necessary to check the addresses value of "sender",

"recipient". Because here you are passing whatever variable
comes in "sender", "recipient" addresses from outside.

 Function: - _transferStandard, _transferToExcluded,
_transferFromExcluded (‘sender’, ‘recipient’)

o It's necessary to check the addresses value of "sender",

"recipient". Because here you are passing whatever variable

comes in "sender", "recipient" addresses from outside.

o 7.2: Compiler version is not fixed:-

=> In this file you have put “pragma solidity ^0.6.12;” which is not a good

way to define compiler version.

=> Solidity source files indicate the versions of the compiler they can be

compiled with. Pragma solidity >=0.6.12; // bad: compiles 0.6.12 and above

pragma solidity 0.6.12; //good: compiles 0.6.12 only

=> If you put(>=) symbol then you are able to get compiler version 0.6.12

and above. But if you don’t use(^/>=) symbol then you are able to use only

0.6.12 version. And if there are some changes come in the compiler and you

use the old version then some issues may come at deploy time.

=> Use latest version of solidity.

o 7.3: Approve given more allowance:-
=> I have found that in approve function user can give more
allowance to a user beyond their balance.

=> It is necessary to check that user can give allowance less or

equal to their amount.

=> There is no validation about user balance. So it is good to check that a user not

set approval wrongly.

 Function: - _approve

o Here you can check that balance of owner should be bigger

or equal to amount value.

• Summary of the Audit

Overall the code is well and performs well. There is no back

door to steal fund.

Please try to check the address and value of token externally before sending to

the solidity code.

Our final recommendation would be to pay more attention to the visibility of

the functions , hardcoded address and mapping since it’s quite important to

define who’s supposed to executed the functions and to follow best practices

regarding the use of assert, require etc. (which you are doing ;)).

• Good Point: code performance is good. Address validation

and value validation is done properly.

• Suggestions: Please add address validations at some place

and also try to use the static version of solidity, check

amount in approve function, and check burn functionality.

	SMART CONTRACT AUDIT REPORT
	• Overview of the audit
	• Attacks made to the contract
	• Over and under flows
	• Short address attack
	• Visibility & Delegate call
	• Reentrancy / TheDAO hack
	• Forcing Ethereum to a contract

	• Good things in smart contract
	• SafeMath library:-
	• Good required condition in functions:-

	• Critical vulnerabilities found in the contract
	 Function: - isContract (‘account’)
	 Function: - excludeFromReward, includeInReward (‘account’)
	 Function: - _transferBothExcluded (‘sender’, ‘recipient’)
	 Function: - _transferStandard, _transferToExcluded, _transferFromExcluded (‘sender’, ‘recipient’)
	 Function: - _approve

	• Summary of the Audit

